
AD-A093 265 VIRGINIA POLYTECHNIC INST AND STATE UNIV WASHINGTON -ETC FIG 9/2
FI NAL SCIENTIFIC REPORTdUI

O NOV A0 R J ORGASS AFOSR-79-0021

UNCLASSIFIED VPI/SU-TM AG 7 AFOSR-TR-80-1292 N

NOR.D

AFOSR-TR. 80 01292' 92)ESION DISON t
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE P0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA WIubgtow. D. C 20041

(703) 471-4600LEVEL C
QL)

Final Scientific Report
Grant AFOSR-79-0021

4Richard J. Orgass

Technical Memorandum No. 80-7 D !'
November 22,1980 S 1

Submitted to

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Building 410
Boiling Air Force Base

Washington, D.C. 20332

A rnrovea forpubllo ree'i '
"

Lo=W at DuIn IntertuoAir

2 2~ 201

2

@ 1980 by Richard J. Orgase

General permission to republish, but not for profit, all or part of this report is
granted, provided that the copyright notice is given and that reference is made
to the publication (Technical Memorandum No. 80-7, Department of Computer
Science, Graduate Program in Northern Virginia, Virginia Polytechnic Institute
and State University), to its date of issue and to the fact that reprinting
privileges were granted by the author.

C.t

SECORITY CLASSIFICATION OF THIS P

PORT DOCUMENTATION PAGE READ INSTRUCTIONS
BI ,ORE COMPLETI, .- ':-0.

2. GOVT ACCESSION NO. 3. RECIPIENT'S 4.J GALT, , -. "_ S -4 3 - k' fi• I (r It
TIT'E (and Subtitle) S TYPE OF RE*044T &-PERIOD COVERED

IN LSCIENTIFIC REPORTe Fin51

6. PERFORMING O1G. REPORT NUMBER

7. AUTHOR(s) S CONTRACT OR GRANT NUMBER(s)

,Rich ard J.Oras AFOSR-79..O21

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT P CT. TASK
Dept. fif Computer Science AREA & WORK UNIT NU BERS

Virginia Polytechnic Institute and 61102 -23;4 A 5
State University , .', _.

I. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
22 Noveb 1-989'

Air Force Office of Scientific Research/NM t322 NUMBER OF PAGE,,sft.,/ ,, -- ti.: NUMBEReOF PAGES "

Boiling AFB, Washington, D. C. 20332 ii

I. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

: . .UNCLASSIFIED
IS. DECLASSIFICATION'DOWNGRAOING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

/Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. It different Irom Report)

18 SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary end identify by block number)

C.!

20. ABSTRACT (Continue on reverse aide If necessary and Identify by block number)

The work performed under this grant can be divided into three time pericds.
From October 1979 to January 1980 the main emphasis of grant work was bringing
software that was reliably working on a DECsystem-lO into reliable operation on
the Virginia TECH VM/CMS system. This work is best viewed as preparation for _
the substantial work of the grant.

DD 1473 EDITION OF I NOV $5 IS OBSOLETE UI.N'SIF lED
SECURITY CLASSIFICATION OF THIS PAGE (In li, F t.. .eedli

I! I

Table of Contents

1. Overview 1

2. APL Semantics and Implementation 3

3. Verification of APL Programs 4

4. File System Development 5

5. Other Software Development 8

6. Publications 9

7. Personnel 10

8. Publications 11

-. sscion For

DT(' T.R 7

Just if [-tio;)-

By

Distribution/

Availability Codes

Avail and/or

D~ist ca

Final Scientific Report
Grant AFOSR-79-0021

1. Overview /
The work performed und this grant can be divided into three time periods. From

October 1979 to January 1 980 1 main emphasis of grant work was bringing software that
was reliably working on a aECysem-10 into reliable operation on the Virginia Tech vwcms
system. This work is best viewed as preparation for the, aMtn#!ba work of the gramn

From January 1980 until the end of April1980o was directed toward achieving two
objectives: (1) Modify an incremental program verification sytem to accept AP. programs.
The main work here was to isolate code in the verifier that is specific to the syntax of the
programming language in which the programs were written in a single S6&LA class so that it
could be easily modified for different languages. (2) Completing the implementation of an
Am expression evaluator based on a formal semantics of Am. and verifying this
Implementation with respect to the formal semantics. During this period, the objective was
to complete a verified implementation of an AP. expression evaluator and to have an
interactive verifier for AP. expressions working correctly by about August 15, 1980. These
two pices of software were then to be used to conduct a number of experiments that would
aid inIte design of a verifier for all of AP..

At the end of April 1980, the Principal Investigator decided to leave Virginia Tech to join
Xerox Corporation at the on August 31, 1980. This decision combined with a desire to
complete a publishable piece of work motivated a change in the work plan and objectives for
the remaining period of the grant.

If the planned pieces of work had been completed as expected, a significant step
toward realizing the overall objectives of the grant would have been achieved but there
would have been two partially completed pieces of work neither of which would have been
sufficient for publication. In order to achieve publishable results during the time from Aprl
to August 1980, work on the verifier was set aside so that full attention could be devoted to
completing the formal definition of APL and completing an APL implementation that is verified
with respect to the formal definition. Such an implementation was completed and part of the
verifcation exists as a draft manuscript and the essential details of the remainder of the
verification are recorded in working notes. The Principal Investigator Is continuing the work
of preparing a manuscript that describes this work.

To support both the incremental verifier and the APt implementation, a substantial effort
was devoted to implementing, in the vM/cms environment, a usable file system for interactive
programs. A manuscript, "Files in an Interactive Environment" describing some of this work
has been submitted for publication in Software Practice & Experience.

A draft manuscript of a research monograph, "A Primitive Recursive Semantics and
Implementation of APL" has been submitted for publication as a volume in the Springer.
Verlag Lecture Notes in Computer Science series.

Available computing resources proved to be a significant obstacle to productive work on
this grant. Most of the first fifteen months were devoted to bringing software that was

L,--: -

2 Final Scientific Report

satisfactorily working on a oEcsystem-lO into operation in the vwcms environment. The
major problems may be summarized as folows.

In spite of the fact that wAuA implementations are closely controlled by the Norwegian
Computing Center and that the semantics of the language is expected to be the same in all
implementations, different implementations have varying numbers of system erron. It turned
out to be the case that programs used in this research exposed many problems in the imE*
SIMULA implementation.

The Vm/CMS system is nominally an interactive system but it lacks many of the
capabilities that one expects in a modem interactive computing system. Since these
capabilities are essential for the work of the grant, it was necessary to devote considerable
effort to creating a suitable working environment in vwcms. Some of this work is discussed
in the paper described above.

Until the end of October 1979, this research work also suffered from the lack of reliable
data communications between the Northern Virginia Graduate Center (the location of the
principal investigator) and the Virginia Tech main campus in Blacksburg. Once reasonably
reliable data communications became avalalable (first with foreign exchange lines and later
with statistical multiplexors on a dedicated wideband line), the work on software
development proceeded much more quickly.

The specific pieces of software that were constructed with the support of this grant are:

(1) An implementation of APL that includes user defined functions and
operators but which relies on APt definitions of some primitive functions
and operators was completed. The implementation supports file input
and output but does not include facilities for saving workspaces in binary
form.

(2) An interactive incremental verifier which is substantially independent of
the programming language that is used was brought into reliable
operation under vm/cMs. Some work remanins to be done to make the
program completly independent of the programming language with which
it is used.

(3) An interactive file system with high quality terminal interfaces has been
desgined and partly implemented. A revision of this system to reduce the
computing resources that it consumes was designed but the
implementation was not completed.

(4) A set of programs for parsing arbitrary SLR(1) languages and for
manipulating the parse trees of such languages has been constructed.
The implemented facilities include pattern matching on parse trees.

(5) A vwcmi/s implementation of RATFOR that is compatible with the UNIX and
OEC.io implementations of this preprocessor was completed. This
preprocessor was transplanted from a DEC-I so that It would be possible
to transport software that is needed for the work of the grant from a DEC.
io to the Virginia Tech vmh/CmS system.

-. -- --------- -----.. -

Grant AFOSR-70-0021 3

2. APL Semantics and Implementation

Substantial effort was required to install the partial implementation of AP. that was
available when this grant began on the Virginia Tech Vm/cMS system. Once this transfer was
completed and the appropriate supporting software written, it was possible to complete an
implementation of A. based on a formal definition of the language. A summary of some of
the problems follows.

An unreasonable amount of time was devoted to tracking down apparent program errors
that were found to be a consequence of the fact that certain characters (e.g., {,}, -, I,])
have more than one ECOKIC code. Different system utilities provide different translations from
A= to EBcoic. All of the know character ambiguities can now be corrected by a program
that was created for this purpose.

During the research period, five different SmILA compilers were used. At the beginning
of the grant work, MYS SiMULA, Version 6.00 was available at Virginia Tech. The partial
implementation of AP that was available at the start of the grant exhibited a major error (as
wall as minor errors) in this compiler/run time system. When the problem was reported to
the Norwegian Computing Center (SMULA supplier), Version 6.02 of MVS S .iLA was provided
to repair the problem.

This system made it possible to execute much of the interpreter but the terminal dialog
was unacceptable as an approximation to the AP. terminal interface. At this point, it
appeared that a substantial assembly coding effort would be required to reasonably
approximate the APL terminal interface. Just as a decision to write this assembly code was
to be implemented, a version of ise SmJLA specifically designed for cMS was announced by
Imperial College of Science and Technology. This version has a few windows into the
operating system and it appeared to be possible to provide a reasonable terminal interface
with a minimum amount of assembly coding. Therefore, this system was acquired and
installed at Virginia Tech. While this SiMULA system solved some problems, other system
errors were present In this version.

The Principal Investigator was engaged in a regular correspondence with the Norwegian
Computing Center during this period and a number of his suggestions for enhancements to
im swuLA were included in Version 7.00 of MYs SMUA and this system was installed shortly
after Version 6.02 of CMS SAuA expired in August 1979. This new system repaired some of
the problems with earlier versions but there was another internal error which was
subsequently corrected by the Norwegian Computing Center.

A significant fragment of the actual code for the Ani implementation appears in the
manuscript of a monograph prepared as part of the work of this grant and, therefore, a
suitable publication format of the program text was required. ISM SIMULA systems before
Version 7.0 were upper case only and to provide publication format program text a program
to format SmLLA programs was imported from DEC.10 SMULA and modified for use in the CMS
environment. Until August 1979, when Version 7.0 was first available, two copies of program
text were maintained: an executable copy and a publication copy. When Version 7.0 of IBM
SI LA became availble, the execution text was destroyed because the publication format
text became executable. This change in the SImULA compiler made it significantly easier to
work with the system.

The work on file system development summarized in Section 4 provides both the
terminal interface and other support for the Aft implementation and is an essential part of
the work on the AP. implementation.

A

4 Final Scientific Report

A clean proof of the correctness of the API. implementation up to the evaluation of
expressions has been completed and is part of a draft research monograph. This includes
the correctness of the implementation of APt. individuals, primitive functions, symbol tables
and an expression evaluator. The formal semantics of user-defined functions and operators
has been completed and has been implemented. The essential arguments in the proof of
correctness of this part of the implementation are recorded In rough draft form.

3. Verification of APL Programs

Bringing the interactive verifier that was implemented in oEc.1o SiMJLA into reliable and
useable operation in IsM SMULA was a long and difficult process and adequately reliable
operation was first achieved in January 1980. The difficulties described above for the API
implementation caused more serious problems when working with the verifier.

A genuinely interactive verifier makes heavy demands on the file management
capabilities of an operating system and it was quickly discovered that an enhanced file
system would be needed to provide adequate facilities while working with the verifier. The
work on a file system described in Section 4 provides essential support for the verifier in its
present form and some of the capabilities that are needed to fully support work with AP.
programs.

The main problem that was encountered with the verifier is related to a number of
serious errors in the SIMULA compiler/run time system. This program makes very heavy
demands on the storage manager, the procedure calling mechanism and the coroutine
linkage mechanism and the implementation of these aspects of SMULA is particularly weak in
iBm SiMULA. The Norwegian Computing Center has devoted substantial efforts to solving

these problems and each version of iBM SiMULA has new code for this part of the system. At
each step in this improvement, small additional problems and incompatibilites arise.

Each version change of the SIMULA system required careful checking of the program and
subtle modifications to avoid the current version of bugs in the system. It has been
observed that code which was introduced to cause the program to execute more reliably in
one version caused problems in a later version.

Version 7.00 of MvS simuLA is much more reliable than earlier versions but the run time
system caused unpredictable terminations for protection or addressing exceptions. A
fortunate combination of events led to a useful solution of these problems.

The University Computing Center changed from VM/CMS 5.8 to vM/cms 8.5 and at the
same time Version 7.00 of cms SIMULA became available. With the active support of
Computing Center staff members, it was determined that most of the run time system
problems can be avoided by using the CMS SiMULA compiler with the mvs SIMULA run time
system under vM/CmS 6.5. Although this strange combination of software is not without
problems, it is the most reliable working environment that is available and was adequate.
This combination was identified in January 1980.

After the imported verifier came into reliable operation in the vM/CMs environment, the
program was divided into several logically related segments of code and this code now
forms the basis for a laboratory to construct a variety of programs that are useful both for
this research and in other research and instructional activities.

L

Grant AFOSR-70-0021

In addition, the verifier was modified so that those aspects of the verifier which depend
on the syntax and semantics of the language in which programs are to be verified are
contained in separate swULA classes. The program was modified to read both syntactical
and semantic definitions from input files. In order to provide a verifier for AP. expressions,
an input grammar and a set of semantic rules are required. This work was abandoned in
order to complete the verified APt. implementation discussed in Section 2.

.1
There is no checkpoint facility available in iBm SIULA and it is quite often desirable to

be able to interrupt a terminal session with the verifier and resume at a later time. In order
to do this, the file system that supports the verifier was equipped with the capability to write
log files and the capability to read indirect files while reproducing a terminal transcript on a
terminal while an input file is being read. This is described in more detail in Section 4.

Work on the verifier consumed a significant fraction of the human and computing
resources of the grant from the beinning of the grant until the end of April 1980 when
attention was restricted to the AP. implementation. After this, work on APt consumed
essentially all human and computing resources available. While it Is not possible to give
exact figures, work on the verifier probably consumed 65% of the computing resources and
60% of the human resources available for this work. This assumes a division of work on the
file system between the two major programs. If work on the verifier had continued, a much
larger fragment of the computing resources would have been used on the verifier.

4. File System Development

Since the principal objective of this research program is the verification of APL
programs, work on the design and implementation of an input/output system for IBM SIMULA
requires some explanation.

Both the incremental verifier and the AP. implementation which are an important part of
this research are strongly interactive programs and these programs require dynamic file
naming (that is, the ability to name and open a file during execution) if they are to function
in an acceptable manner. IBM SIMULA as provided by the Norwegian Computing Center and
cmS S*MULA as provided by Imperial College use 0s/37o simulation macros to perform
input/output. This system suffers from many limitations when working with interactive
programs:

The cms simulation of 0s/370 input/output requires that file definitions be provided to a
program before execution begins. Moreover, once a file definition has been executed, the
file is known to a program by a Do name rather than the file name. When working with both
the verifier and the APL implementation, one does not, in general, know which files will be
read or written during execution. One possible solution to this problem is to issue a large
number of file definitions before program execution and then retain a written record of the
correspondence between DO names and file names. Even with the help of the CMS EXEC
processor, this was found to be very time consuming and the source of many errors
particularly when a CRT terminal is used.

Terminal support for program input/output in the iBM SiMULA implementation is a
byproduct of this use of Os simulation macros. Output written to the terminal is double
buffered and, therfore, extensive program modifications were needed to write extra blank
lines to make sure that a prompt is printed before the response is read from the terminal.
An empty line of input is treated as an end-of-file and an accidental strike of the return key

/1

6 Final Scientific Report

causes the termination of execution with a loss of all work in the current execution of a
program.

In early work with CA, ad hoc solutions to these problems were employed and it ;

became quite clear that these problems would persist and become more and more difficult.
Therefore, a comprehensive solution to these and other problems was undertaken.

The first approach to the solution of this problem was the design and implementation of
a SPMULA class DIALOG which contains procedures to provide dynamic file naming and a
minimal set of primitives for terminal dialog. In addition, a number of procedures which are
available in the OEC-IO SiMULA library but which are unavailable in the IBM SIULA library were
added to this class.

The first version of DIALOG greatly simplified work with the verifier but it quickly became
obvious that there were still too many possibilities for errors. In addition, it was still
impossible to reproduce the prompt by indentation that is used in APL and to provide some
prompts from the verifier in a reasonable way.

A second version of DIALOG was constructed to provide additional security and prevent
unexpected termination of execution because of some trivial error. In addition, assembly
code was written to provide the output file attribute Breakoutimage which is available in DEC-
10 SVMULA but unavailable in iBM SIMULA. This class appeared to solve many of the problems
that were encountered.

The two versions of DIALOG are described in technical memoranda 79-3 and 79-3a; the
former is no longer available because it is obsolete. As work with this class continued, two
problems became quite obvious:

The declaration of class DIALOG is approximately 2500 lines of SIMULA code and is
supported by about 300 lines of assembly code. This imposes a significant overhead when
compiling the verifier or the APL implementation. A single compile was costing $20.
[Although IBM SIMULA supports a restricted form of separate compilation of classes, the
computing resources required when separate compilations are used is greater than the
resources required for a complete compilation.]

Both the APL verifier and the AP. implementation must interact with terminals and files
written in the standard character set ASCI or EBCDIC) as well as the AP. character set. There
are three APt character sets: key-paired, bit-paired and tty-code. Only the first two are of
interest for this work. Character set translation was required so that the running program
would be unaware of the character set of the input/output device. This translation should
be performed by the input/output system and it was quite obvious that an extension of
DIALOG to provide these capabilities would be both inefficient and quite unreliable because it
would extend DIALOG far beyond what was anticipaed in the original design.

Therefore, a comprehensive design of a file system that is a proper extension of the
SIMULA Common Base Definiton was undertaken. The view of files adopted in this design is
quite different from the standard cMs view and is much easier to use.

The first assusmption is that a file is named only by the name of the file as it appears in
the CMs directory. Moreover, simply writing to a file after giving it a name is sufficient to
cause the file to exist. Running programs may dynamically reference both input and output
files using only the name of the file. If a program is to read or write different files in different
executions, the file names are read from the terminal.

Grant AFOSR-70-0021 7

The second assumption is that a file may be associated with any input or output device
and from the vantage point of a running program there is no difference between devices
except for the name of the file. The various file formats that are used by IBM systems are of
no concern to the program or to the author of the program.

The third assumption is that the data in a file may be written in one of three character
sets: EBCDIC, key-paired APL or bit-paired APL. Further, a program may interpret characters
coming from a file or written to a file as either a sequence of EBCDIC characters or as a
sequence of key-paired AP. characters. It is the responsibility of the file system to provide
appropriate translations in accord with specifications given when the file is opened.

A design requirement is that the files actually read and written must be standard CMs
files so that programs written using this file system can communicate with other programs by
way of the cms file system.

A second design requirement is that all run time errors must be detected and reported
to the user with an opportunity for corrective action from the terminal rather than a simple
error termination.

The design of this file system is described in Technical Memorandum 79-8a and a
prototype of this file system was implemented by modifying much of the code that was
originally part of class DIALOG.

This prototype file system solved many problems and made the software development
work of the gran much easier. It was also exported to a number of other CMS SIMULA users.

The prototype system was used to construct a stream input class that supports indirect
files for use in the incremental verifier. When this code was used in production, a number of
strange things began to happen -- parts of files were omitted in some executions but not in
others. After a more careful investigation it was discovered that this was a result of timing
problems in the operating system.

In the prototype system, terminal input/output is performed by assembly coded
procedures that use the CMS input/output system and file input/output is performed using os
simulation macros as used by the SIMULA run time system. System documentation for CMs
indicates that this is an acceptable combination but a number of cMS installations report
timing problems similar to the ones encountered in this work.

To avoid these problems, an assembly coded version of input/output procedures for
disk files and virtual readers, printers and punches was designed and may have been
implemented. The results of this work are not available and it is not possible to give a
precise reason. Two possible explanations are supported by available information and it is
not possible to decide which is correct.

Just after the programmer that was working on this implementation reported that the
work was completed and ready for testing, the cMs mini-disks assigned to the programmer
were erased. The University Computing Center restored these mini-disks from tapes that
were written after the programmer reported that work was completed but before the principal
investigator tested the programs. The programs in question were not on the tape. There
are two possible explanations for this state of affairs:

(1) The computing center did not restore the mini-disks from the correct tape. The
computing center has records to support the claim that the correct tape was used but this

8 Final Scientific Report

evidence is not conclusive. (2) The work was not completed by the programmer and the
disks were erased to hide the fact that the work was not completed. Examining the date-
time stamps of the restored files and accounting records support this hypothesis but the
available evidence is not conclusive.

The programmer that was doing this work accepted another position with the Virginia
Tech Department of Computer Science before the termination of this grant and when this
problem was brought to the attention of the Head of the Computer Science Department he
directed the programmer to again complete this work. As of this date, the work is
incomplete and there is no reason to expect that it will be completed.

This problem arose largely as a consequence of the fact that the programmer was
working at the Virginia Tech main campus in Blacksburg, approximately 300 miles from the
location of the principal investigator. This made direct supervision of the individual's work
difficult.

5. Other Software Development

The incremental verifier parses programs and assertions using an SLR(1) parser. The
parser in the verifier reads the state table of the parser and a list of the tokens of the
language from an input file and, therefore, is independent of the grammar of the language to
be parsed.

Such parse table files are produced from a BNF grammar by an SLR(1) parser generator
that was written in DEC.10 RATFOR at the University of Arizona by Dr. F. C. Druseikis. Both
the RATFoR and Fortran source files for this program were transferred to Virginia Tech. This
program consists of approximately 4000 lines of RATFOR source code. While the Fortran
code is quite acceptable to the DEC-io Fortran compiler, it it is completly unacceptable to the
isM Fortran compiler. In addition, the parser generator relies on the representation of
integers on the host hardware. This representation is a parameter in the RATFOR code but
appears as many constants in the corresponding Fortran code. To simplify the transfer of
this program as well as some small utilities and to provide a generally useful tool for
program development at Virginia Tech, a RATFOR preprocessor that is the same as the UNIX
and TOPS-10 version but which writes Fortran that is accepted by the IBM compiler was
constructed using part of the code from this RATFOR implementation.

This RATFOR preprocessor is now in general use at Virginia Tech and has been exported
to other cMS installations.

The RATFOR preprocessor was used to bring the SLR(1) parser generator into reliable
operation in the vM/CMS environment.

A variety of utility programs to deal with problems that are related to the physical
location of the Principal Investigator and to limitations in vm/cMS system utilities were
constructed. These include programs to correct different translations from ASCII to EBCDIC, to
simulate an upper and lower case line printer on a 30 cps hardcopy terminal, to perform line
printer spooling of files that contain tab characters, etc.

After the Principal Investigator decided to leave Virginia Tech it became clear that it was
very desirable to record the software that was produced under this grant on magnetic tape
in a form that can be read by a variety of computing machines. The university computing

____ ___ ____ ___ ____ ___ ___ ____ ___ _ ~ i~~*~ .

Grant AFOSR.70-0021 9

center provides only a limited utility for writing files on tape and the tape format written by
this utility caused serious problems when attempting to read such tapes on a CMS system
and the format is not suitable for reading on other systems. Therefore, a tape dump and
restore utility that can be used to read and write tapes for use with other computing systems
was written. This task was made substantially more difficult by a computing center policy
that prohibits the use of tapes on the Vm/CMS system. It was necessary to convert files into
card images so that tape write jobs could be transmitted to an Mvs system running on
another processor. This also required code to reconstruct files written in this way when
tapes are read.

6. Publications

A manuscript, "Files in an Interactive Environment", describing some of the work on file
systems, has been submitted for publication in Software Practice & Experience; referees
reports are awaited.

A partial draft of a research monograph, "A Primitive Recursive Semantics and
Implementation of APL", has been submitted for publication as a volume in the Springer.
Verlag series Lectures in Computer Science. The first referee strongly praised the content
of the manuscript and suggested that it be reviewed by a second referee and that the text be
revised to make it more pleasant to read.

Professor Juris Hartmanis, editor of this series, hand indicated that he is favorably
disposed toward publishing the monograph and the Principal Investigator has indicated that
he is prepared to make significant changes in the text for final publication.

The typescript for the draft manuscript was prepared using a conventional typewriter
and is not in machine readable form. The program text of the APL implementation that is
discussed in this manuscript has been transferred to disks at Xerox and is available for use
with the word processing system that was used to create this document. Xerox has
promised to provide some support for the preparation of the final monograph and the
Principal Investigator is prepared to continue this work as soon as it is accepted for
publication.

A total of seventeen Technical Memoranda that describe work done under this grant
have been written and distributed. Of the seventeen, fifteen are still available and the other
two are obsolete.

Much of the supporting software for this research has been exported to other CMS
installations and is being used actively.

7. Personnel

Dr. Richard J. Orgass directed his efforts toward bringing the software that is used in
this research into operation in the vm/cMs environment, toward completing a forma definition
of the syntax and semantics of APL, toward completing a verified implementation of APL and
toward constructing a verifier for APL programs.

10 Final Scientific Report

To solve the file management problems, he designed and implemented the SIMULA class
DIALOG for the CMs environment and designed and partially implemented an interactive file
system. This work on the file system is documented in technical memoranda.

He spent a significant amount of time working with the Norwegian Computing Center to
solve problems related to bringing the verifier into operation and to constructing a usable
working environment out of parts of the verfier and other software.

Dr. J. J. Martin, Associate Professor of Computer Science at Virginia Tech, devoted one
month to the work of the grant. During this time he familarized himeleve with the verification
techniques and programs that are used in this work. He has written a technical report
describing many of the capabilities of the SLR(1) parser which was used in other parts of the
research program.

These faculty members were assisted by a number of student employees of the grant;
their activities are summarized below.

Mr. Stephen M. Choquette implemented the CMS RATFOR system with general guidance
from Dr. Orgass. Mr. Choquette received a B.S. in Computer Science from Virginia Tech in
June 1979 and is now employed by IBM and a part time student in the Northern Vriginia
Graduate Program of Virginia Tech. His full time position and studies leave no further time
for work on this grant.

Mr. Robert Porter was employed as a Graduate Research Assistant during the summer
of 1979. He assisted Dr. Orgass in the implementation of DIALOG and supported the work of
Dr. Martin.

Mr. R. D. Johnson, a sophmore at Virginia Tech, worked for the grant intermittently
during the 1979-1980 academic year. He assisted Dr. Orgass in the implementation of the
interactive file system by writing the assembly code that supports this file system.

Mr. J. W. Stibbards, a Virginia Tech senior, was briefly involved in the work of the grant
but found that he had too many other commitments and withdrew from this work. This was
a wise decision because his educational program is far more important

Mr. R. Critz, a Virginia Tech sophmore taking a year off from his formal education,
worked for the grant as a programmer. He brought the SLR(1) parser generator into
operation and has written several assembly procedures to facilitate the management of the
CMS environment. He also served the grant as program librarian and kept the grant software
in order. He was to have implemented an assembly coded file system that only used the cms
input/output macros but this work is not available.

A continuing problem for this grant was the lack of graduate assistants to work on the
research program. All of the graduate students in the Northern Virginia Program have full
time jobs and their commitments to work, studies and family preclude any other activities.
University regulations prohibit paying full time salaries that might attract a qualified
programmer in the Metropolitan Washington area and it was not possible to use a full time
programmer in place of graduate students.

bkI

Grant AFOSR-70-0021 1

8. Publications

A list of Technical Memoranda describing work performed under this grant follows.
Copies of reports numbered 79-1 to 80-1 were transmitted to AFOSR as attchments to 80.2.
Copies of reports numbered 80-3 to 80-6 are attachments to this original of this report.

79-1 R. J. Orgass. Concerning Classes Within Classes.
January 15, 1979.

79-2 R. J. Orgass. Line Printer Spooling on an ASCII terminal.
April 12, 1979.

79-3a R. J. Orgass. A SIMULA Class for Writing Interactive Programs. October 14,
1979.

79-4 S. M. Choquette and R. J. Orgass. CMS RATFOR System Manual.
July 1, 1979.

79-5 S. M. Choquette and R. J. Orgass. CMS RATFOR User's Manual.
July 1, 1979.

79-6 R. J. Orgass. CMS Software Notebook (First Edition).
July 31, 1979.

79.7 R. J. Orgass. Converting DEC-10 SIMULA Programs to CAS SIMULA.
August 3, 1979.

79-8a R. J. Orgass. Design for a CMS SIMULA File System with Four Character Sets.
November 5,1979.

80.1 J. J. Martin. A SIMULA Program for SLR(1) Parsing.
January 1980.

80-2 R. J. Orgass. Interim Scientific Report, AFOSR Grant 79-0021.
February 15, 1980.

80-3 R. J. Orgass. Files in an Interactive Environment.
April 1,1980.

80-4 R. J. Orgass. L/B$SM: An Extension Of the SMLULA Library.
August 28, 1980.

80-5 R. J. Orgass. Tape Dump and Restore.
August 28, 1980.

80-6 R. J. Orgass. SIMULA File Classes.
October 8, 1980.

'..:1.' ., -

